OrchestralLily:
A Package for Professional Music Publishing
with LilyPond and BTEX

Reinhold Kainhofer, http://reinhold.kainhofer.com, reinhold@kainhofer.com
Vienna University of Technology, Austria

and

GNU LilyPond, http://www.lilypond.org

and

Edition Kainhofer, http://www.edition-kainhofer.com, Austria

Abstract

LilyPond [Nienhuys and et al., 2010] and ¥TEX pro-
vide excellent free tools to produce professional mu-
sic scores ready for print and sale. Here we present
the OrchestralLily package for LilyPond, which sim-
plifies the creation of professional music scores with
LilyPond and I#TEX even further. All scores are gen-
erated on-the-fly without the need to manually spec-
ify the structure for each individual score or part.
Additionally, a WTEX package for the prefatory mat-
ter is available and a templates system to create all
files needed for a full edition is implemented.

Keywords

LilyPond, Music scores, Publishing, LaTeX, Soft-
ware package

1 Introduction

In professional music publishing applications
like Finale, Sibelius and SCORE are the pre-
dominant software packages used. However, the
open source applications LilyPond and IXTEX
provide excellent free alternatives for producing
professionally looking music scores, as well. To
ease the production of such scores even further,
we developed a package called OrchestralLily for
LilyPond and IXTRX. Instead of having to pro-
duce each score and instrumental part manually
in LilyPond, this package produces these scores
dynamically from the music definitions.

2 A Short Introduction to LilyPond

LilyPond, the music typesetting application de-
veloped under the umbrella of the GNU project,
is a WYSIWYM ("What you see is what you
mean”) application, taking text files containing
the music definitions and corresponding settings
and typesetting it into a PDF file. Writing a
LilyPond score is very similar to coding a soft-
ware program.

In this section we will give a very short
overview about the LilyPond syntax, mainly to
highlight our motivation to create the Orches-
tralLily package, which creates the scores dy-

namically. Fore a more detailed overview over
LilyPond we refer to the excellent Documen-
tation of the LilyPond project: http://www.
lilypond.org/Documentation/.

A very simple LilyPond score containing only
one staff has the following form:

\version 72.13.177
\relative ¢’
c4\p d8[(c]) ed—. d—. |
cl \bar”|.”

}

0

P

All notes are entered by their note name!,
followed optionally by the duration and addi-
tional information like beaming ([and]), dy-
namics (e.g. \p) and articulations (e.g. -. for
staccato). When running this file through the
LilyPond binary, a five-line staff with a treble
clef, 4/4 time signature and C major key is im-
plicitly created. All layouting and spacing is
done by LilyPond according to best practices
and standards from music engraving.

2.1 Writing Full Scores in Pure
LilyPond

To produce a score containing a system with
more than one staff (e.g. full orchestral scores,
choral scores or vocal scores) or to produce a
score with lyrics attached to the notes, LilyPond
can no longer automatically create the staves,
but one has to write the score structure manu-
ally into the LilyPond file:

\version 72.13.17”

sopmusic = \relative c¢’’
c4\p d8[(c]) ed—. d—. | ¢l \bar 7|.” }
soplyrics = \lyricmode { Oh, be __ hap — py
now! }

1 Using Dutch names by default: b for the note below
¢ and the postfix -is for sharp alterations and -es for
flat alterations. Other languages can easily be used by
including a language file, e.g. \include "english.ily".

http://reinhold.kainhofer.com
reinhold@kainhofer.com
http://www.fam.tuwien.ac.at/
http://www.lilypond.org/
http://www.lilypond.org
http://www.edition-kainhofer.com/
http://www.edition-kainhofer.com
http://www.lilypond.org/Documentation/
http://www.lilypond.org/Documentation/

altomusic = \relative c’’ {
g4 f4 e4 f | el \bar 7|.”
altolyrics = \lyricmode { Oh, be hap — py
now! }

\score {
\new ChoirStaff <<
\new Staff {
\new Voice = ”Soprano” {
\dynamicUp \sopmusic

}
\new Lyrics = ”SLyrics”
\lyricsto ”Soprano” \soplyrics
\new Staff {
\new Voice = ”Alto” {
\dynamicUp \altomusic

}
\new Lyrics = ” ALyrics”
\lyricsto ”Alto” \altolyrics
>>
}
o) P
i \ i I
n Oh, be_ hap-py now!
4 ! T " I I
7\ r [} I | | I I
i I
Oh, be hap-py now!

Here, the actual music definitions require only
eight lines of code, while the structure of the
score requires already more lines.

As one can image, creating a full orches-
tral score with lots of instruments and multi-
ple movements quickly becomes a nightmare to
produce manually. Each staff and each staff
group defined this way takes 3 to 7 lines of code,
quickly leading to a score structure definition of
hundreds of lines. For example, a large work
with 23 instruments and 12 movements has 276
individual staves, not counting groups. Even
worse, each movement typically has the same
well-defined structure in the orchestral score.
So, a lot of code is duplicated, with the only
difference being the music expressions inserted
into the scores.

This makes it extremely hard to maintain
large orchestral scores in pure LilyPond, and
even small changes to the appearance of only
one instrument require lots of changes.

2.2 C++ and Scheme / Guile

Internally, LilyPond is written in C++ with
Guile as embedded scripting language. Many
parts of the formatting code (e.g. all graphi-
cal objects like note heads, staff lines, etc.) are
defined in Guile and can be modified and over-
written easily using Scheme code embedded into
the score. LilyPond even provides an extensive

Scheme interface to most of the functions re-
quired to create a score. This interface is the
key for our OrchestrallLily package, where all
scores are generated on-the-fly using Scheme.

3 OrchestralLily: An easy example

OrchestralLily uses a slightly different approach
than manually writing LilyPond scores: Instead
of telling LilyPond explicitly about staves and
groups, the score structure is already built in,
using default names, and the user only has to
define some specially-named variables, contain-
ing the music, lyrics, clef, key, special settings,
etc. The score is then generated on-the-fly by
the following call:?

\createScore #’MovementName”
#’(” Instrumentl” ”Group2” ”Instrument2”)

Of course, multiple \createScore commands
can be given in a file to produce multiple scores
in the same file (in particular, this is used in
large works with multiple movements, where all
movements should be printed sequentially).

The specially-named variables holding the
music definition mentioned above have the form

‘ [MovementName | InstrumentMusic

where Instrument is replaced by the (de-
fault) abbreviation of an instrument or vocal
voice and [MovementName] is optional for pieces
with only one movement. To define a spe-
cial clef, key, time signature, lyrics or spe-
cial settings for a voice, one simply defines a
variable containing the clef, key, time signa-
ture, etc. This special variable for each instru-
ment is called [MovementName] InstrumentXXX,
where XXX is either Clef, Key, TimeSignature,
Lyrics, ExtraSettings, etc.

To show how this works, the two-voice exam-
ple from above using OrchestralLily will now
look like:

\version 72.13.17”
\include ”orchestrallily /orchestrallily .ily

»

SMusic = \relative ¢’

c4\p d8[(c]) e4d—. d—. | ¢l \bar 7|.” }
SLyrics = \lyricmode {

Oh, be __ hap — py now! }
AMusic = \relative ¢’

gd f4 e4 f | el \bar 7|.” }

ALyrics = \lyricmode {
Oh, be hap — py now! }

\createScore #”7 #’(”S” "A”)

2The hash sign # indicates a scheme expression, the
#°(...) is a list in Scheme syntax.

o) P
| | I |
Oh, be__ hap-py now!
X —— ——
I I | |
Oh, be hap-py now!

It is clear that this automatic creation of
staff groups saves a lot of effort for large-
scale orchestral projects. It should be noted
that OrchestralLily has a large hierarchy of
orchestral instruments, including the identifier
"FullScore" for a full orchestral score. So in-
stead of #° ("S" "A") above, we could have also
said #’ ("FullScore") to generate a full score
of all defined voices. Voices not defined will be
ignored, so #’ ("S" "A" "T" "B") would have
the same output, as the T and B voices are not
defined and thus not included in the output.

4 Structure of a Score

To understand OrchestralLily’s approach, we
have to take a closer look at the organization of
a full score. A music score has an intrinsic hier-
archy of instruments and instrument groups, as
shown in Figure 1.

This hierarchy is pre-defined in Orchestral-
Lily and will be used, unless the LilyPond score
explicitly overrides it:

e The instruments are named by their stan-
dard abbreviation (e.g. “V”, “VI”, etc.
for violins, “Fag”, “Fagl” etc. for bas-
SOOH’ “Ob” for Oboe’ “S”’ ££A777 (LT”’ (LBW’
“SSolo” etc. for vocal voices, etc.).

e Each group of instruments has a pre-
defined name: “Wd” for woodwinds, “Br”
for the brass instruments, “Str” for strings
(except continuo, i.e. celli and basses,
which are typically not included in the
strings group, but placed at the bottom of
a full score), “Choir”, “Continuo”, etc.

e Several types of scores are pre-
defined: “LongScore”, “FullScore” (like
“LongScore”, except that two instruments
of the same type, e.g. Obl and ObII, are
combined and share one staff rather than
using separate staves), “VocalScore” (only
the vocal voices and the piano voice),
“ChoralScore” (only the vocal voices, no
instruments).

The score types pre-defined in OrchestralLily
adhere to the standard instrument order usually
employed for full orchestral scores.

|
|
AN
>

) 1" 4
S| Fl €=
= eJ o
3 0
o
=| Ob| €=
= -~ U O
-~ 0
)" 4
VI 'I’\“ {) [@]
= o
gl S 0
£l (| ==
& — oJ
0
)" 4
Va| oy €——
L S
o
I S
o) (0]
A TSolo
E» L
g o
S
©
8 E
> _ A
©
e
@) E
T
8
LEE==
L = \
o
g pr—
R
c
- o=
O

Figure 1: Hierarchy of an orchestral score

5 More complex examples

The examples so far placed the music definition
and the actual score creation via \createScore
into the same file. For larger projects, it is
advisable to place the music definitions into a
separate file, as we need several different score
files, each of which will include this defini-
tions file. All the examples in this section will
use the following music definition file “music-
definitions.ily”, which defines a flute, a violin,
soprano and alto, as well as a continuo part for
a movement named Cadenza. Also, a Piano re-
duction is defined in this file. Notice also, that
this include file already loads OrchestralLily, so
we don’t have to do this again in the file for each
individual score.

\include "orchestrallily /orchestrallily .ily”
\include
?orchestrallily /oly_settings_names.ily”

\header {
title = ”A cadenza”
}
CadenzaPieceNameTacet = ”Cadenza tazet”

% Flute and Violin:
CadenzaFlIMusic = \relative c¢’’

| ¢l \bar 7|.” }
CadenzaVIMusic = \relative ¢’’ {
cl6| e g e] d[f a f] e[g e c] b[d b g] |
cl \bar 7|.”

{ ed4d a g b,

% The vocal voices:
CadenzaSMusic = \relative c¢’’ {

c4\p d8[(c]) ed—. d—. | ¢l \bar ”|.” }
CadenzaSLyrics = \lyricmode {

Oh, be __ hap — py now! }
CadenzaAMusic = \relative ¢’ {
g4 f4 e4 f | el \bar 7|.” }
CadenzaALyrics = \lyricmode {

Oh, be hap — py now! }

% Continuo: Organ / Celli / Bassi / Bassoon
CadenzaBCMusic = \relative ¢ { c4 f4 g g, |
cl \bar 7|.” }
CadenzaFiguredBassMusic = \figuremode {
sd <6>8 <5> <6 4>4 <5 3> | sl
}

% Piano reduction:

CadenzaPIMusic = \relative ¢’’ {
\twoVoice {

cl6[e g e] d] f a f]

gl |
P A
ed a <g c>4 4
Pl %2
<c g e>1 \bar 7|.”

e[gec] b[db

CadenzaPIIMusic = \relative c¢ {
<c g'>4 f<gcxd<gd> | % 2
<c ¢,>1 \bar 7|.”

}

All variables in this file start with Cadenza,
followed by the instrument name, which is how
OrchestralLily detects that these definitions be-
long to a movement name Cadenza. We also
defined a piece title to print before the score.

Another thing to mnotice here 1is that
we also include the file “orchestrallily/
oly _settings_names.ily”. That file contains
many instrument and score name definitions
for most common instruments and causes them
to be printed before each staff in the score.

5.1 The Full Score

A cadenza

Violino I

I
5
D

Soprano

Organo

The additional \setCreateMIDI ##t line
causes a midi file of the score to be created in
addition to the PDF file.

Notice that we never explicitly said that the
continuo is supposed to be in bass clef. Orches-
tralLiily already knows that the “BC” (Basso
continuo) voice is in bass clef! Similarly, trom-
bone parts will employ the correct C clef, the
choir bass will also use the bass clef, etc.

If some instruments should have cue notes, we
don’t want to print them in the full score, so in-
stead of \createScore, OrchestralLily provides
the command \createNoCuesScore, which will
additionally remove all cue notes from the
printed score.

5.2 Instrumental Parts

Each instrumental part can be generated just
like the full score. If one additionally defines the
“instrument” header field, then the instrument
name will be printed in the right upper corner,
like in most printed scores.

\version 72.13.17”7

\include ”"music—definitions.ily”

\include
“orchestrallily /oly_settings_instrument.ily”
\header { instrument = \VIInstrumentName }

\createScore #’Cadenza” #’(”?VI”)

\version 72.13.17”
\include

?orchestrallily /oly_settings_fullscore.ily”
\include ”"music—definitions.ily”
\setCreateMIDI ##t
\setCreatePDF ##t

\createScore #’Cadenza” #’(” FullScore”)

A cadenza

If no music is defined for the given instru-
ment for the desired movement (indicated by
the first string that you pass to createScore),
OrchestralLily will instead print a “tacet” head-
line. For example, if we try to create a score for
the oboe, there is no oboe part defined and a
“Cadenza tacet” is printed instead:

\version 72.13.17”
\include ”"music—definitions.ily”
\header { instrument = \OblInstrumentName }

\createScore #’Cadenza” #’(”Obl”)

A cadenza

Cadenza tazet

5.3 Vocal Scores and Modifying
Individual Staves

To create a vocal score (remember, we have al-
ready defined the piano reduction in the defini-
tions!), you only have to call \createScore for
the “VocalScore” score type. To make things
more interesting, here we want the staves for
vocal voices to appear smaller than the piano
staff. Furthermore, the note heads of the so-
prano voice should be colored in red and the
alto lyrics printed in italic.

These special settings for S and A can
be provided by placing them into \with
blocks and saving them into appropriately
named variables called Cadenzal[SA] (Staff |
Voice|Lyrics)Modifications:

A cadenza

5.4 Figured Bass

The continuo part in the music definitions above
is simply the bass line of the cadenza. How-
ever, most old scores additionally provide a bass
figuration to indicate the harmonies to the or-
ganist. Creating such a figured bass score is
also extremely simple in OrchestralLily: All you
have to do is to define its corresponding vari-
able, named CadenzaFiguredBassMusic in our
case, where you define the appropriate bass fig-
ure in LilyPond’s \figuremode syntax:

\version 72.13.177

\include ”"music—definitions.ily”

CadenzaFiguredBassMusic = \figuremode {
sd <6>8 <6 4>4 <5 3> | sl

\createScore #’Cadenza” #’(” Continuo”)

\version 72.13.17”
\include ”music—definitions.ily”
CadenzaSStaffModifications = \with {
fontSize = #—-3
\override StaffSymbol #’staff—space =
#(magstep —3)
}
CadenzaAStaffModifications =
\ CadenzaSStaffModifications
CadenzaChStaffModifications =
\ CadenzaSStaffModifications

CadenzaALyricsModifications = \with {
\override LyricText #’font—shape =
#italic }

CadenzaSVoiceModifications = \with {
\override NoteHead #’color = #red }

\createScore #’Cadenza” #’(” VocalScore”)

A cadenza

[UL0)}

6
, 6 5 4

Organo Yg——#—F

O ﬂ

| 1S

5.5 Cue Notes

Suppose that we now want to add a second flute,
which will set in on the third beat. In the instru-
mental part, we want to print cue notes from the
first flute, but in the full score (or in a combined
flute part) we don’t want the cue notes.

In LilyPond, one can simply create cue notes
by first defining the music to be quoted via
\addQuote and then inserting the cue notes via
\cueDuring #"quotedInstrument" { r2 }.

First, we add the new flute 2 part in a sepa-
rate file “music-definitions-flute2.ily”:

\addQuote #’Flutel” \CadenzaFlIMusic

CadenzaFlIIMusic = \relative c¢’’ {
\namedCueDuring #’Flutel” #UP "Fl.1”
"Fl.2” { Rl } |
gl \bar 77"77

Note that we quote the first flute directly
in the music for the second flute, using the
method \namedCueDuring (which is equivalent
to LilyPond’s built-in function \cueDuring, ex-
cept that it also adds the name of the quoted
instrument).

The Flute 2 part now simply is:

\version ”2.13.17”
\include ”music—definitions.ily”

\include ”"music—definitions—flute2.ily”

% The Flute 2 part:
\createScore #’Cadenza” #’(” FI1II”)

A cadenza

0 #

5.7 Drum Staves and other staff types

=

Of course, OrchestralLily is also able to print
non-standard staves, like rhythmic staves or
tablatures:

A cadenza

L1 gy FL2

) I

r) |
A § I ©
1 ©

» |

Flauto IT

P

In the full score (or a combined flutes part),
however, we do not want to print the cue
notes, since the notes from Flute 1 are already
printed in the score. In this case, we can use
\createNoCuesScore instead of \createScore
to suppress the creation of any cue notes:

\version ”72.13.17”

\include ”"music—definitions.ily”
\include ”"music—definitions—flute2.ily”

% remove the cues in Flute 2:
\createNoCuesScore #’Cadenza” #’(”FlLong”)

\version ”2.13.17”
\include ”orchestrallily /orchestrallily .ily’

)

\header {
title = ”"Drum and tab staves”
composer = ” Anonymous”

}

drumIMusic = \drummode { crashcymbal4 hihat8
halfopenhihat }

drumIIMusic = { c4 c4 }

tabularMusic = { c4 <e g>8 d16 rl6 }

\orchestralScoreStructure #’(
(”drumI” ”DrumStaff” ())
(*drumII” ” RhythmicStaff” ())
(” tabular” ”TabStaff” ()))

\orchestralVoiceTypes #’(

(? drumI” ” DrumVoice”)
(” tabular” ”TabVoice”))

\createScore #’Cadenza” #’(”druml” ”drumlII”
”tabular”)

A cadenza

r

TTe

O

.
Flauto I ! i

3
g

ol
|

Flauto 1T

=

¢

G of

5.6 Transposition

Parts can be easily transposed (e.g. for trans-
posing instruments between concert pitch and
written pitch):

\version ”72.13.17”

\include ”music—definitions.ily”

% We need to give the key explicitly ,
% so that it will also be transposed:
CadenzaVIKey = \key ¢ \major

% Transpose to g major
CadenzaVITransposeFrom = g

\createScore #’Cadenza” #’(”VI”)

Drum and tab staves

Anonymous
2
| X [04]
1 IR It
| | B W r\/ rI/

@
[Y
{

F
LA
3

NO

=}

w

6 Tweaking the Score

As the OrchestralLily package is implemented
entirely in LilyPond syntax and Scheme code,
anyone can easily adjust or extend its function-
ality directly in a score or in an include file,
without the need to recompile or reinstall any-
thing.

7 BETEX for the Preface and Cover

So far, we have concentrated on creating the
musical score. A professional edition, however,
also features a nice title page, a preface and in
many cases also a critical report. For these,

we chose ITEX for typesetting together with
a INTEX package providing a uniform layout,
many macro definitions aiding with the criti-
cal report and a beautiful title page. The music
scores are directly included into the IXTEX file
using the pdfpages package.

The templates (see next section) provided by
OrchestralLily already produce a beautiful lay-
out without the need for any special tweaks. All
one has to do is fill in the missing text and the
general information about the score, and the
XTEX scores will look like the following pages
from a real score, typeset using OrchestralLily:

Johann Strauss

Serben-Quadrille
Serbian Quadrille

Op.14

Bearbeitung fiir Streichtrio
Arrangement for String Trio

Partitur / Full Score

Edition Kainhofer, Vienna, EK-2000-1

Johann Strauss (1825-1899)

Serben-Quadrille
Serbian Quadrille

Op.14

Bearbeitung fiir Streichtrio
Arrangement for String Trio

Violino, Viola, Violoncello

Partitur / Full Score

Bearbeitet von: / Edited by:
Aleksa & Ana Aleksic

Edition Kainhofer, Vienna, 2010
EK-2000-1

Inhaltsverzeichnis

Hauptquellen der Bearbeitung / Main sources of this edition

Vorwort Preface

Serben-Quadrille
Bearbeitung fir Streichtr

1. Pantalon

8 Generating a Template

OrchestralLily also provides a template-based
script to generate all files required for a full edi-
tion of a score: The score information, including
instrumentation, movements, voices with lyrics,
etc., are defined in one input file. After running
the generate_oly_score.py script, one has the
full set of files for the edition, including a Make-
file. Only the music, lyrics, and the actual text
of the preface and the critical report need to be
filled in. Running make will always update all
scores and produce ready-for-print files for all
desired scores and instrumental parts.

A typical input file for the cadenza example
used above is shown here:

Poutput_dir”: ”Cadenza” ,
”version”: 72.13.117,
?template”: "EK_Full” |

?defaults”: {

?title”: "A test for OrchestralLily”,
”composer”: ”Reinhold Kainhofer”,
”composerdate”: 71977-",
77year ”: 77200977’
?publisher”: ”Edition Kainhofer”,
”scorenumber”: "EK—1040",
”basename”: ”Cadenza” ,
?parts”: |

{7id”: ”Cadenza”, ”piece”: "A cadenza”,

”piecetacet”:

I

”? Cadenza tazet”},

?instruments”: [? FII”, "FIII”, ?VI?, ”S”
”"A”, ?Continuo”],
?vocalvoices”: [7S”, 7A”],
?scores”: [”Full”, ”"Vocal”, ”Choral”],
}7
”?scores”: [”Cadenza”],
?latex”: {},

}

Running this file through the script generates
one definitions file for the music definition, Lily-
Pond files for each of the given scores (Full, vo-
cal and choral scores), as well as for each in-
dividual instrumental part. Each of the scores
will also have a IATRX file that includes the ti-
tle page, the preface (including the table of con-
tents, which is exported by LilyPond!), the score
and optionally a critical report.

All these files are tied together via a Makefile,
so all one needs to do to create a first version is
to copy in the music definition and run make.

9 Availability of OrchestralLily

The OrchestralLily package [Kainhofer, 2010b]
is currently dual-licensed under the Creative

Commons BY-NC 3.0 license [Creative Com-
mons, 2010] as well as under the the GPL v3.0.

Its source code can be found in a public git
repository [Kainhofer, 2010a]:
http://repo.or.cz/w/orchestrallily.git.

More information about the OrchestralLily
package can be found in the documenta-
tion at its homepage http://kainhofer.com/
orchestrallily/ (which is unfortunately not
always kept up to date) or better directly from
the source code.

10 Acknowledgements

A project like Orchestrallily would of course
never be possible without the help of many peo-
ple. The developers of LilyPond and of BHTEX —
too many to name them explicitly here — made
OrchestralLily possible in the first place by pro-
viding excellent open source applications for
both music and text typesetting. The enormous
flexibility and configurability of both applica-
tions (including the possibility to modify the
internals and implement required features your-
self) laid the foundation to turn a small project
into a professional music publishing framework.
The cadenza example used throughout this
article was originally written by me, until Ana
Aleksié pointed out several harmonic shortcom-
ings and helped me rewrite it. Similarly, Man-
fred Schiebel greatly improved my dilettantish
attempts at producing a piano reduction.

References
Creative Commons. 2010. By-nc 3.0
at license. http://creativecommons.org/

licenses/by-nc/3.0/at/.

Reinhold Kainhofer. 2010a. Git repository
of Orchestrallily. http://repo.or.cz/w/
orchestrallily.git.

Reinhold Kainhofer. 2010b. The Orches-
tralLily package for lilypond. http://
kainhofer.com/orchestrallily. LilyPond
and KTEX package for professional music
typesetting.

Han-Wen Nienhuys and Jan Nieuwenhuizen
et al. 2010. GNU LilyPond. http://www.
lilypond.org/. The music typesetter of the
GNU project.

http://repo.or.cz/w/orchestrallily.git
http://kainhofer.com/orchestrallily/
http://kainhofer.com/orchestrallily/
http://creativecommons.org/licenses/by-nc/3.0/at/
http://creativecommons.org/licenses/by-nc/3.0/at/
http://repo.or.cz/w/orchestrallily.git
http://repo.or.cz/w/orchestrallily.git
http://kainhofer.com/orchestrallily
http://kainhofer.com/orchestrallily
http://www.lilypond.org/
http://www.lilypond.org/

	1 Introduction
	2 A Short Introduction to LilyPond
	2.1 Writing Full Scores in Pure LilyPond
	2.2 C++ and Scheme / Guile

	3 OrchestralLily: An easy example
	4 Structure of a Score
	5 More complex examples
	5.1 The Full Score
	5.2 Instrumental Parts
	5.3 Vocal Scores and Modifying Individual Staves
	5.4 Figured Bass
	5.5 Cue Notes
	5.6 Transposition
	5.7 Drum Staves and other staff types

	6 Tweaking the Score
	7 LaTeX for the Preface and Cover
	8 Generating a Template
	9 Availability of OrchestralLily
	10 Acknowledgements

