
Sustainability in F/OSS: developers as a non-renewable resource

Sustainability in F/OSS: developers as a
non-renewable resource

Graham Percival
http://percival-music.ca

Rencontres Mondiales du Logiciel Libre 2010
Bordeaux, France

Friday, 9 July, 2010

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

http://percival-music.ca

Sustainability in F/OSS: developers as a non-renewable resource

Overview

1 Current development is not sustainable
Core developers do most of the work
Losing core developers is bad
Projects will lose core developers

2 Keeping developers
Incentives
Disincentives

3 Preparing for developer loss
Survival of a species
Training the next generation: harder than it sounds
Successes and failures from GNU LilyPond
Fitering out offers of help
Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

1 Current development is not sustainable
Core developers do most of the work
Losing core developers is bad
Projects will lose core developers

2 Keeping developers
Incentives
Disincentives

3 Preparing for developer loss
Survival of a species
Training the next generation: harder than it sounds
Successes and failures from GNU LilyPond
Fitering out offers of help
Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Do F/OSS projects share the workload?

Popular view is that F/OSS has lots of developers.

• e.g., “Given enough eyeballs, all bugs are shallow”

Actually, workload generally follows Zipf’s law.
(frequency is inversely proportional to rank)

• Healy and Schussman, 2003. “The Ecology of Open-Source
Software Development”

I Data from over 45,000 sourceforge projects.
I # of developers, commits / developer, # of emails, etc.
I “The distribution of projects on a range of activity measures

is spectacularly skewed, with only a relatively tiny number of
projects showing evidence of the strong collaborative activity
which is supposed to characterize oss.” [from paper abstract]

• Similar results from other studies.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Is “Number of Commits” a good metric?

Number of commits is a vague measure of project work.

Problems:

• Not all commits are equal (new feature vs. 1-line typo fix).
• Code vs. documentation vs. build vs. translations?
• Some people break work into more pieces than others.

Why use them?

• Easy to measure.
• Easy to understand.
• The exact workload distribution doesn’t matter for this talk!

Not a good metric, but it’s an acceptable metric.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Case study: GNU LilyPond (sheet music typesetter)

Compiles text files into beautiful printable scores.

Simple example:

Computational aesthetics is hard.
(details not important – this is not a talk about music)

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

LilyPond Development

Code size:

• ≈ 100, 000 lines of C
• ≈ 30, 000 lines of scheme (a dialect of lisp)
• ≈ 25, 000 lines of python
• ≈ 18, 000 lines of metafont
• ≈ 450, 000 lines of documentation source files (including

translations)

Began in 1996 by 2 Dutch undergraduates.

92 authors in 14 years, 46 in the past 6 months.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Commits vs. developer rank, last 5 years. (almost Zipf’s law)

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Same graph, log-log scale. (Zipf’s law would be a straight line)

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Split into 6-month intervals.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Core developers do most of the work

Split into 6-month intervals, log y.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Losing core developers is bad

Effect of losing core developers (selected data)

Top 4 developers, selected 6-month periods:

Date Commits (name)

05-1 626 (Han-Wen) 237 (Jan) 123 (Graham) 35 (Werner)

06-7 780 (Han-Wen) 87 (Jan) 87 (Joe) 76 (Graham)

07-7 446 (Graham) 164 (John) 148 (Joe) 116 (Reinhold)

08-7 379 (Reinhold) 281 (John) 278 (Paco) 158 (Neil)

09-1 95 (John) 93 (Paco) 78 (Carl) 60 (Joe)

09-7 321 (Graham) 165 (Patrick) 132 (John) 99 (Neil)

10-1 284 (Graham) 236 (Paco) 153 (Jan) 92 (Patrick)

2009-1 to 2009-7, the top three overall developers were away.

• Core developers can motivate others.

The drop-off in commits is less abrupt in recent years.

• Less disruption if somebody leaves.

Sustainability in F/OSS: developers as a non-renewable resource

Current development is not sustainable

Projects will lose core developers

Developer Loss – it will happen

Developers can leave due to project problems...

• Not enough incentives
• Too many disincentives

... but also for for non-project reasons.

• Graduating from high school / university
• Career change
• Getting married or having a baby
• Passing away

I Hopefully after a long life, but sometimes earlier.

Fix project problems, but we’ll all die eventually.

• Developer loss is unavoidable!

Sustainability in F/OSS: developers as a non-renewable resource

Keeping developers

1 Current development is not sustainable
Core developers do most of the work
Losing core developers is bad
Projects will lose core developers

2 Keeping developers
Incentives
Disincentives

3 Preparing for developer loss
Survival of a species
Training the next generation: harder than it sounds
Successes and failures from GNU LilyPond
Fitering out offers of help
Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

Keeping developers

Incentives

Incentives: Financial

Money:

• Job / full-time contract.
• Cash / short-term contract – might backfire.

I Offer a professor $25 for 10 hours of work?
I Users value new features more than bugfixes.
I Why work on bugfixes for free vs. new features for cash?

Invite them to conferences.

Send them stuff:

• “Swag”: company-branded t-shirts, USB drives, etc.
• Postcards, special beer from your country, buy them dinner if

they visit your city, etc.

Sustainability in F/OSS: developers as a non-renewable resource

Keeping developers

Incentives

Incentives: (almost) Free

Send them artistic or “end-user” stuff:

• Beautiful printed sheet music.
• Professionally-recorded performance.
• Printed artwork.
• Game that uses your library / compiler / etc.

Give praise / credit / feed ego.

Make development entertaining:

• Create friendships.
• Write funny emails on mailing lists.
• Make them feel like part of a team.

Ask them!

Sustainability in F/OSS: developers as a non-renewable resource

Keeping developers

Incentives

Incentives: Risky

Guilt trip

• Bad: “You do so much work around here... you have to keep
on working or else everything will fall apart!”

• Slightly better: “I can’t handle everything at once, and I really
need a break. Patrick, Trevor: could one of you handle bug
reports for the next two months?”
(temporary, end in sight, but still pressures individuals)

Bargain

• “I’d like to release binaries for Windows, but I can’t do that if I
need to keep on writing documentation.”

Both strategies can backfire.

• Use infrequently.
• Gambling about how much people trust you.

Sustainability in F/OSS: developers as a non-renewable resource

Keeping developers

Disincentives

Getting Rid of Developers

Insult developers (especially from users).

• Insults to other developers made me shelve some doc work.

Demand that a particular bug be fixed.

• Users saying “you must...” prompted me to leave for 4 months.

Ignore requests for feedback (from users).

• Our new website was delayed for about 8 months due to this.

Ignore requests for freeback (from developers).

• Code style, patch review, architecture changes, etc.
• We recently lost one of our top 20 developers due to this, and

it’s a constant disincentive for other developers.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

1 Current development is not sustainable
Core developers do most of the work
Losing core developers is bad
Projects will lose core developers

2 Keeping developers
Incentives
Disincentives

3 Preparing for developer loss
Survival of a species
Training the next generation: harder than it sounds
Successes and failures from GNU LilyPond
Fitering out offers of help
Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Survival of a species

Survival of a species

Developers can leave with or without prior notice:

• Graduation will be known in advance.
• Career change might be unexpected.
• Accidental death will never give advanced notice.

Don’t rely on advance warning – prepare now!

How to prepare for loss of developers?

• Biological analogy: survival of a species.
• Train new developers to replace those who will leave.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Survival of a species

What needs to be taught?

Consider each developer – how can they be replaced?

• Unique knowledge or access?

I Build process, login to web server, specialized code, etc.

• Unwritten policies?
• Time-saving tips + experience.

“Apprentices” are vital.

• Try to do each task by yourself.
• Discover what you don’t know and document it.

I Oral tradition is not reliable!

• “Apprentice” could even be another core developer.

I Documenting unwritten knowledge is the primary goal.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Survival of a species

When should you have apprentices?

Definitely too late:

• Dead developer.
• Developer who left due to a huge argument.

Maybe too late:

• Developer leaves due to career change, baby duties,
graduation.

Too early:

• Developer is currently an apprentice.
• Policies / code / procedures are changing drastically.

Start as soon as possible:

• Training an apprentice takes a lot of time+effort.
• Biological analogy: don’t wait until old age for a baby!

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Training the next generation: harder than it sounds

Training the next generation: harder than it sounds

Need the right kind of person to train people – technical
knowledge, good at explaining, available time, etc.

Stages of a new developer:

1 Recruitment.
2 Initial training, explain task(s).
3 Patch review and critique.
4 Independent: produces good patches without help.

How much mentoring to become independent?

• Some people send perfect patches without any mentoring.
• Usually new developers need hours of mentoring.

I Some of our most active developers started this way.
I Sometimes all this mentoring effort is worthwhile.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Training the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (1)

Net gain to the project = Twork − Tmentoring

• Twork is the amount of time it would take an existing developer
to do the work.

• Tmentoring is the time that developer spent helping a new
developer learn how to do that task.

Example 1: Mike (the mentor) asks for doc-writing help.

• Avery says he can help. Mike assigns him a 10-minute task.
• Avery needs to be taught how to use svn and diff, makes

typos, etc. Avery spends 2 hours working.
• Mike spends a total of 60 minutes teaching + correcting.
• Avery is demoralized and leaves the project.
• Net gain of 10 - 60 = -50 minutes. (omit Avery’s time)
• Project would be better off if Avery had not offered to help. :(

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Training the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (2)

Example 2: Mike (the mentor) asks for doc-writing help.

• Billy says he can help. Mike assigns him a 10-minute task.
• Billy is completely unfamiliar with open-source development,

and requires 2 hours of mentoring before finishing the patch.
• At this point, net gain of 10 - 120 = -110 minutes.
• However, Billy is stubborn, and keeps on working in the

project. He finishes another nineteen 10-minute tasks.
• At this point, net gain of 20*10 - 120 = 80 minutes.
• Project benefitted from mentoring Billy.

Example 3: Carlos offers to help.
• Would the project benefit if Mike mentored him?
• Probability of Carlos being a net gain?
• Any ways of minimizing the risk?

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Successes and failures from GNU LilyPond

Data from GNU LilyPond

LilyPond GDP (Grand Documentation Project):

• 1st goal – 12-month project to train new doc editors.
• 2nd goal – give unlimited mentoring; is this effective?
• 20 volunteers (≈ 5 were already involved in LilyPond).
• I spent ≈ 700− 800 hours mentoring volunteers, up to 4 hours

a day.

Results:

• Only 1 in 4 volunteers were definitely a net gain.
• Another 1 in 4 were not a significant net gain or loss.
• Overall, GDP was not a significant net gain or loss.
• 6 months later, we had 0 people working on documentation.

I (3-4 people who began as doc editors became strong
programming developers – GDP was not a complete failure!)

Conclusion:

• Unlimited mentoring is not effective.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Fitering out offers of help

Filtering out offers of help

Not a nice thought, but important to consider.

Balance mentoring potential developers (risky) and improving
the project yourself (no risk).

A few techniques for finding this balance:
• “Read the source and submit well-formed patches.”

I No risk to existing developers, but far fewer new recruits.
I Might turn away some potentially fantastic developers.

• Write documentation about how to work on your project.
I LilyPond Contributor’s Guide is 120 pages!
I Answer all questions by referring to that guide.

• Test tasks: keep a few simple tasks for new developers.

I Insist that new developers finish those tasks before asking for
help with the work they want to do.

I Only the really motivated new developers will do them.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Dealing with new developers

Tips for documentation for new developers

Difficult to formalize all policies, architecture, tricks.

Can become another time sink:

• LilyPond Contributor’s Guide: at least 200 hours, mostly from
our most skilled developers.

• We could have fixed a lot of bugs with that time!

Ask the new developers to add to your guide.
• These could be used as additional “test tasks.”

New developers gradually do less “guide writing.”

• Time to start recruiting another generation of developers.

Sustainability in F/OSS: developers as a non-renewable resource

Preparing for developer loss

Dealing with new developers

Keeping New Developers Happy

Generally the same things that keep developers happy!

Fast response time.
• I try to keep my response within 24 hours.

Private emails; “newbie developer” mailing list?
• Many new developers are shy about emailing
lilypond-devel.

Praise them, prominently give them credit, don’t insult or
ignore them.

• This is harder than it sounds – new developers will make
stupid mistakes, but make sure you correct them gently.

• How many senior developers are available to review patches?
24 hours might not be possible... but try to give an accurate
estimate of when the review might happen.

Sustainability in F/OSS: developers as a non-renewable resource

Overview (end)

1 Current development is not sustainable
Core developers do most of the work
Losing core developers is bad
Projects will lose core developers

2 Keeping developers
Incentives
Disincentives

3 Preparing for developer loss
Survival of a species
Training the next generation: harder than it sounds
Successes and failures from GNU LilyPond
Fitering out offers of help
Dealing with new developers

	Overview
	Current development is not sustainable
	Keeping developers
	Preparing for developer loss
	Overview (end)

