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Current development is not sustainable

Core developers do most of the work

Do F/OSS projects share the workload?

Popular view is that F/OSS has lots of developers.

• e.g., “Given enough eyeballs, all bugs are shallow”

Actually, workload generally follows Zipf’s law.
(frequency is inversely proportional to rank)

• Healy and Schussman, 2003. “The Ecology of Open-Source
Software Development”

I Data from over 45,000 sourceforge projects.
I # of developers, commits / developer, # of emails, etc.
I “The distribution of projects on a range of activity measures

is spectacularly skewed, with only a relatively tiny number of
projects showing evidence of the strong collaborative activity
which is supposed to characterize oss.” [from paper abstract]

• Similar results from other studies.
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Current development is not sustainable

Core developers do most of the work

Is “Number of Commits” a good metric?

Number of commits is a vague measure of project work.

Problems:

• Not all commits are equal (new feature vs. 1-line typo fix).
• Code vs. documentation vs. build vs. translations?
• Some people break work into more pieces than others.

Why use them?

• Easy to measure.
• Easy to understand.
• The exact workload distribution doesn’t matter for this talk!

Not a good metric, but it’s an acceptable metric.
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Current development is not sustainable

Core developers do most of the work

Case study: GNU LilyPond (sheet music typesetter)

Compiles text files into beautiful printable scores.

Simple example:

Computational aesthetics is hard.
(details not important – this is not a talk about music)
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Current development is not sustainable

Core developers do most of the work

LilyPond Development

Code size:

• ≈ 100, 000 lines of C
• ≈ 30, 000 lines of scheme (a dialect of lisp)
• ≈ 25, 000 lines of python
• ≈ 18, 000 lines of metafont
• ≈ 450, 000 lines of documentation source files (including

translations)

Began in 1996 by 2 Dutch undergraduates.

92 authors in 14 years, 46 in the past 6 months.
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Current development is not sustainable

Core developers do most of the work

Commits vs. developer rank, last 5 years. (almost Zipf’s law)
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Current development is not sustainable

Core developers do most of the work

Same graph, log-log scale. (Zipf’s law would be a straight line)
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Current development is not sustainable

Core developers do most of the work

Split into 6-month intervals.
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Current development is not sustainable

Core developers do most of the work

Split into 6-month intervals, log y.
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Current development is not sustainable

Losing core developers is bad

Effect of losing core developers (selected data)

Top 4 developers, selected 6-month periods:

Date Commits (name)

05-1 626 (Han-Wen) 237 (Jan) 123 (Graham) 35 (Werner)

06-7 780 (Han-Wen) 87 (Jan) 87 (Joe) 76 (Graham)

07-7 446 (Graham) 164 (John) 148 (Joe) 116 (Reinhold)

08-7 379 (Reinhold) 281 (John) 278 (Paco) 158 (Neil)

09-1 95 (John) 93 (Paco) 78 (Carl) 60 (Joe)

09-7 321 (Graham) 165 (Patrick) 132 (John) 99 (Neil)

10-1 284 (Graham) 236 (Paco) 153 (Jan) 92 (Patrick)

2009-1 to 2009-7, the top three overall developers were away.

• Core developers can motivate others.

The drop-off in commits is less abrupt in recent years.

• Less disruption if somebody leaves.
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Current development is not sustainable

Projects will lose core developers

Developer Loss – it will happen

Developers can leave due to project problems...

• Not enough incentives
• Too many disincentives

... but also for for non-project reasons.

• Graduating from high school / university
• Career change
• Getting married or having a baby
• Passing away

I Hopefully after a long life, but sometimes earlier.

Fix project problems, but we’ll all die eventually.

• Developer loss is unavoidable!
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Keeping developers

Incentives

Incentives: Financial

Money:

• Job / full-time contract.
• Cash / short-term contract – might backfire.

I Offer a professor $25 for 10 hours of work?
I Users value new features more than bugfixes.
I Why work on bugfixes for free vs. new features for cash?

Invite them to conferences.

Send them stuff:

• “Swag”: company-branded t-shirts, USB drives, etc.
• Postcards, special beer from your country, buy them dinner if

they visit your city, etc.
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Keeping developers

Incentives

Incentives: (almost) Free

Send them artistic or “end-user” stuff:

• Beautiful printed sheet music.
• Professionally-recorded performance.
• Printed artwork.
• Game that uses your library / compiler / etc.

Give praise / credit / feed ego.

Make development entertaining:

• Create friendships.
• Write funny emails on mailing lists.
• Make them feel like part of a team.

Ask them!
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Keeping developers

Incentives

Incentives: Risky

Guilt trip

• Bad: “You do so much work around here... you have to keep
on working or else everything will fall apart!”

• Slightly better: “I can’t handle everything at once, and I really
need a break. Patrick, Trevor: could one of you handle bug
reports for the next two months?”
(temporary, end in sight, but still pressures individuals)

Bargain

• “I’d like to release binaries for Windows, but I can’t do that if I
need to keep on writing documentation.”

Both strategies can backfire.

• Use infrequently.
• Gambling about how much people trust you.
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Keeping developers

Disincentives

Getting Rid of Developers

Insult developers (especially from users).

• Insults to other developers made me shelve some doc work.

Demand that a particular bug be fixed.

• Users saying “you must...” prompted me to leave for 4 months.

Ignore requests for feedback (from users).

• Our new website was delayed for about 8 months due to this.

Ignore requests for freeback (from developers).

• Code style, patch review, architecture changes, etc.
• We recently lost one of our top 20 developers due to this, and

it’s a constant disincentive for other developers.
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Preparing for developer loss

Survival of a species

Survival of a species

Developers can leave with or without prior notice:

• Graduation will be known in advance.
• Career change might be unexpected.
• Accidental death will never give advanced notice.

Don’t rely on advance warning – prepare now!

How to prepare for loss of developers?

• Biological analogy: survival of a species.
• Train new developers to replace those who will leave.
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Preparing for developer loss

Survival of a species

What needs to be taught?

Consider each developer – how can they be replaced?

• Unique knowledge or access?

I Build process, login to web server, specialized code, etc.

• Unwritten policies?
• Time-saving tips + experience.

“Apprentices” are vital.

• Try to do each task by yourself.
• Discover what you don’t know and document it.

I Oral tradition is not reliable!

• “Apprentice” could even be another core developer.

I Documenting unwritten knowledge is the primary goal.
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Preparing for developer loss

Survival of a species

When should you have apprentices?

Definitely too late:

• Dead developer.
• Developer who left due to a huge argument.

Maybe too late:

• Developer leaves due to career change, baby duties,
graduation.

Too early:

• Developer is currently an apprentice.
• Policies / code / procedures are changing drastically.

Start as soon as possible:

• Training an apprentice takes a lot of time+effort.
• Biological analogy: don’t wait until old age for a baby!
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Preparing for developer loss

Training the next generation: harder than it sounds

Training the next generation: harder than it sounds

Need the right kind of person to train people – technical
knowledge, good at explaining, available time, etc.

Stages of a new developer:

1 Recruitment.
2 Initial training, explain task(s).
3 Patch review and critique.
4 Independent: produces good patches without help.

How much mentoring to become independent?

• Some people send perfect patches without any mentoring.
• Usually new developers need hours of mentoring.

I Some of our most active developers started this way.
I Sometimes all this mentoring effort is worthwhile.
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Preparing for developer loss

Training the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (1)

Net gain to the project = Twork − Tmentoring

• Twork is the amount of time it would take an existing developer
to do the work.

• Tmentoring is the time that developer spent helping a new
developer learn how to do that task.

Example 1: Mike (the mentor) asks for doc-writing help.

• Avery says he can help. Mike assigns him a 10-minute task.
• Avery needs to be taught how to use svn and diff, makes

typos, etc. Avery spends 2 hours working.
• Mike spends a total of 60 minutes teaching + correcting.
• Avery is demoralized and leaves the project.
• Net gain of 10 - 60 = -50 minutes. (omit Avery’s time)
• Project would be better off if Avery had not offered to help. :(
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Preparing for developer loss

Training the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (2)

Example 2: Mike (the mentor) asks for doc-writing help.

• Billy says he can help. Mike assigns him a 10-minute task.
• Billy is completely unfamiliar with open-source development,

and requires 2 hours of mentoring before finishing the patch.
• At this point, net gain of 10 - 120 = -110 minutes.
• However, Billy is stubborn, and keeps on working in the

project. He finishes another nineteen 10-minute tasks.
• At this point, net gain of 20*10 - 120 = 80 minutes.
• Project benefitted from mentoring Billy.

Example 3: Carlos offers to help.
• Would the project benefit if Mike mentored him?
• Probability of Carlos being a net gain?
• Any ways of minimizing the risk?
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Preparing for developer loss

Successes and failures from GNU LilyPond

Data from GNU LilyPond

LilyPond GDP (Grand Documentation Project):

• 1st goal – 12-month project to train new doc editors.
• 2nd goal – give unlimited mentoring; is this effective?
• 20 volunteers (≈ 5 were already involved in LilyPond).
• I spent ≈ 700− 800 hours mentoring volunteers, up to 4 hours

a day.

Results:

• Only 1 in 4 volunteers were definitely a net gain.
• Another 1 in 4 were not a significant net gain or loss.
• Overall, GDP was not a significant net gain or loss.
• 6 months later, we had 0 people working on documentation.

I (3-4 people who began as doc editors became strong
programming developers – GDP was not a complete failure!)

Conclusion:

• Unlimited mentoring is not effective.
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Preparing for developer loss

Fitering out offers of help

Filtering out offers of help

Not a nice thought, but important to consider.

Balance mentoring potential developers (risky) and improving
the project yourself (no risk).

A few techniques for finding this balance:
• “Read the source and submit well-formed patches.”

I No risk to existing developers, but far fewer new recruits.
I Might turn away some potentially fantastic developers.

• Write documentation about how to work on your project.
I LilyPond Contributor’s Guide is 120 pages!
I Answer all questions by referring to that guide.

• Test tasks: keep a few simple tasks for new developers.

I Insist that new developers finish those tasks before asking for
help with the work they want to do.

I Only the really motivated new developers will do them.
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Preparing for developer loss

Dealing with new developers

Tips for documentation for new developers

Difficult to formalize all policies, architecture, tricks.

Can become another time sink:

• LilyPond Contributor’s Guide: at least 200 hours, mostly from
our most skilled developers.

• We could have fixed a lot of bugs with that time!

Ask the new developers to add to your guide.
• These could be used as additional “test tasks.”

New developers gradually do less “guide writing.”

• Time to start recruiting another generation of developers.
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Preparing for developer loss

Dealing with new developers

Keeping New Developers Happy

Generally the same things that keep developers happy!

Fast response time.
• I try to keep my response within 24 hours.

Private emails; “newbie developer” mailing list?
• Many new developers are shy about emailing
lilypond-devel.

Praise them, prominently give them credit, don’t insult or
ignore them.

• This is harder than it sounds – new developers will make
stupid mistakes, but make sure you correct them gently.

• How many senior developers are available to review patches?
24 hours might not be possible... but try to give an accurate
estimate of when the review might happen.
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